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1. INTRODUCTION

Let C[-1, 1] be the set of all real or complex valued continuous functions
defined on the closed interval [-1,1]. Ifj(x) E C[-I, 1], let

n = 0,1,2,..., (1.1 )

where the norm is the sup norm on [-1, 1] and '1rn denotes the set of all
polynomials p of degree at most n. Bernstein ([ 1, p. 118]; see also [5,
pp. 76-78; 6, pp. 90-94]) proved that

lim (En(f»l/n = 0
n~oo

(1.2)

if and only if j(x) is the restriction to [-1,1] of an entire function. Varga
[13] studied the order and type of this entire function. Reddy [7, 8] further
studied different orders and different types ofj(z) and Juneja [3] studied its
lower order.

Let L 0 denote the class of functions h(x) satisfying conditions (H, i) and
(H, ii):

(H, i) h(x) is defined on [a, (0); is positive, strictly increasing, and
differentiable; and tends to 00 as x -+ 00.

(H, ii) lim h[x(1 +g(x»] = 1
X~OO h(x)

for every function g(x) such that g(x) -+ 0 as x -+ 00.
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Let A denote the class of functions hex) satisfying conditions (H, i) and
(H, iii):

(H, iii)
. h(cx)

11m -he) = 1
X-+OO X

for every c, 0 < c < 00.

Following Seremeta [9], Shah [10] defined generalised order p(a, [J,J) and
generalised lower order A(a, [J,J) of an entire function f(z) as

pea, [J,!) . sup a(log M(r,J»
= 11m . ,

A(a, [J,J) r_oo mf [J(log r)
(1.3)

where a(x) E A and [J(x) E L 0, and generalised various results contained, for
example, in [3, 7, 8, 13].

Taking a(x) = log x and [J(x) = x in (1.3) we get the familiar order
p == p(!) and the lower order A == A(J) of an entire functionf(z) [2, p. 8]. An
entire function fez) for which p = 0 is said to be slow growth. Various
authors (e.g., [4, 11]) have defined order and lower order of an entire
function f(z) of slow growth by considering the ratio IjM(r,J)/ljr, j ~ 2,
where I, x = log x, Ijx = log(lj _, x).

The generalised orders of an entire function in terms of the coefficients in
its Taylor series are characterized by Shah [10]. Some of his results [10,
(1.6), (1. 7)] are obtained under the condition

d[[J-'(a(x»] = 0(1)
d(log x)

as x~ 00. (1.4 )

Clearly (1.4) is not satisfied for a(x) = [J(x). Thus, in this case, the
corresponding resuls of Shah [10, (1.6), (1.7)] are not applicable.

In the present paper we define generalised orders of an entire function in a
new way. Our results apply satisfactorily to entire functions of slow growth
and generalise many previous results [4, 7, 8, 11].

Let n be the class of functions hex) satisfying (H, i) and (H, iv):

(H, iv) There exists a t5(x) E A and xO, K, and K 2 such that

d(h(x»
0< K, ~ d(o(log x» ~ K 2 < 00

for all x> xo'
Let ti be the class of functions hex) satisfying (H, i) and (H, v):

(H, v) lim d(h(x» = K,
x_oo d(log x)

0< K < 00.
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It can easily be seen that nand ii are contained in A. Further nand ii
have no common element. Let Fqjx) = expq(clj+ Ix), where expo(w) = wand
expq(w)= exp(expq_Iw), q= 1,2,.... Then, the functions Fo,p, F z,p+l' with
0< c < 1 if p = 1 and 0 < C < 00 if p > 1, and Fp,p, p ~ 2, 0 < C < 1, are in
n with the choices of t5(x) as Fo,p_I' Fz,p and Fp,p_I' respectively. In fact
all the functions of the form t5(log x), where t5(x) E A, are in n. The
functions (a l - az/x) log x, a l > 0, az~ 0, and log x +a3(lpx)Q4, where
o< a3 < 00 and a4 ~ 1 if p = 1 and 0 <a4 < 00 if p > 1, are in Ii. Since
h(x)En implies h(x)-h(xZ

) as x~oo, the functions FI,I with O<c< 1
and hl(x) log x, where hl(x) satisfies (H, i) are neither in n nor in Ii.

Let

00

j(z)= I
n=O

(1.5)

(1.6)

be a nonconstant entire function. Here Ao= 0 and {A n }:;:'= I is a strictly
increasing sequence of positive integers such that no element of the sequence
{an}:;:'=1 is zero.

We define the generalised order pea, a,f) and the generalised lower order
A(a, a,f) of the entire functionj(z), given by (1.5), as

pea, a,f) . sup a(log M(r,f))
= hm . ,

A(a, a,f) r-->oo mf a(log r)

where a(x) either belongs to n or to ii and

M(r) =- M(r,f) = max Iflz )1·
Izi =r

We remark here that if a(x) E ii then generalized orders of j(z), given by
(1.6), coincide with its (2,2) orders [4]. There are certain functions (e.g.,
(log x)C, 0 <c < 1, or (log X)Ql (lzX)Q2 ... (lpx)Qp, where a l ~ 1 and at least
one at, i = 2,..., p, is nonzero if a I = 1) which are inadmissible in n or ii but
if the rate of growth of an entire function with respect to such functions is
measured by (1.6) with 1 <pea, a,f) < 00, then the same is as well
measured by functions in Ii. Thus, excluding these functions from the classes
n or ii does not mean excluding entire functions of certain types of growth
from our discussion.

Further, let

per) =- p(r,f) = max {Ian 1 rAn}
n>O

and

vCr) =- v(r,f) = max{A n : per) = la r l0n},
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The functions /1(r) and v(r) are called, respectively, the maximum term and
the rank of the maximum term of f(z) for Iz I= r.

In Theorem 3 we obtain p(a, a,f) and A(a, a,f) in terms of jJ(r) and v(r).
Theorems 4-6 deal with characterizations of generalized orders in terms of
an's. We then apply these results in Theorems I and 2 to obtain expressions
for generalised orders in terms of the approximation error En(f).

We shall use the following notations throughout the paper.

Notation 1.

P",(~) = max{l,~}

=~+~

if a(x)Efl

if a(x) E ii.

We shall write P(~) for PI(~)'

Notation 2. G[x; c] = a-I[ca(x)], c is a positive constant.

Notation 3. Ij/(n), n = 0, 1,2,... , will denote the function

Ij/(n) = A I_A log I~I·
n+l n an+1

2. MAIN THEOREMS

Throughout Sections 2 and 4 we shall assume that f(x) E C[-1, 1J is not
a polynomial.

THEOREM 1. Let f(x)E C[-I, IJ and En(f), defined by (1.1), satisfy
(1.2). Then,

(A)f(x) is restriction to [-1,1] of an entirefunctionf(z).

Also

(B) (i) p(a, a,f) =P(L), where

L = lim su a(n)
n~CfJ p a«ljn) 10g(IjEn(f)))

(ii) p(a, a,f) ~ P(L *) if L * is well defined by

a(n)
L * = lim sup --------',.-,--,----,--,....--

n~CfJ a{log(En_l(f)jEn(f))}

(iii) A(a, a,J) ~ P(f), where

I
A • • f a(n)
=hmm .

n-->CfJ a{(1jn) 10g(ljEn(f))}
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(iv) If we take a(x)=a(a) on (-ex), a) then

Jl(a, a,f) ~ P(l*),

(C) Further, if E n(J)/En+ 1(J) is ultimately nondecreasing, then

p(a, a,f) = P(L) = P(L*)

and

Jl(a, a,1) =P({) =P(l*).

THEOREM 2. Letf(x)E C[-I, 1] and En(J) satisfy (1.2). Then

(i) If a(x) En, we have

Jl(a, a,1) = max{Px {It}}
Ink) I

and if we further take a(x) = a(a) on (-ex), a), then

where

and

and

(2.1 )

(2.2)

Maximum in (2.1) and (2.2) is taken over all increasing sequences {nd of
positive integers.
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(ii) Further, if {n m } is the sequence of the principal indices of the
entire function g(z) = L~=o En(f) zn and a(nm) -- a(nm+I) as m ..... 00, then
(2.1) and (2.2) also holdfor a(x) E ii. (Here again we taken a(x) = a(a) on
(-00, a).)

Remark. With a(x) = log x in Theorem 1, some results of Reddy [7,8]
follow.

3. SOME INTERMEDIARY THEOREMS

Throughout this section we shall assume that the entire function f(z),
defined by (1.5), is not a polynomial.

THEOREM 3. Let f(z) be an entire function defined by (1.5). Then

(3.1 )

and

where

and

({JI • sup a(v(r))
= 11m . f (I )({J2 r~OCi m a og r

01 . sup a(log,u(r))
= hm . .

O2 r~OCi mf a(log r)

(3.2)

(3.3)

(3.4)

Proof We shall prove the theorem in several parts.

(i) Since log M(r) is a convex function of log r we have pea, a,1) ~
).(a, a,f) ~ 1.

(ii) pea, a,f) = 01 and A(a, a,f) = O2 follow easily on the lines of
proof of Theorem 1 of Shah [10].

(iii) Let a(x) E n. Since [2, pp. 12, 13; 12, pp. 28-32]

log,u(er) > vCr),

using parts (i) and (ii) of the proof, we have °2 ;;>- max(1, ({J2)'
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To prove 82~ max(l, ({J2) assume that ({J2 < 00. First let 1 ~ ({J2 <d < 00.

Then, from (3.3), we have

(3.5)

for a sequence {rn}, rn~ 00. From (3.5) and [2, pp. 12, 13] we get

for {rn }, since d> 1. This gives 82~({J2' if({J2~ 1, since a(x)EQ. Now, let
({J2 < 1. Then, from (3.3)

v(r~) < log r~ (3.6)

for a sequence {r~}. Using (3.6) and the fact that a(x) E Q one gets 82 ~ 1
and so 82 = max(l, ({J2)'

(iv) Proof of 81 = max(l, ((JI) when a(x) E Q is similar to part (iii)
above.

(v) Now, let a(x) E n. We have [12, pp. 28-32]

a{(l +0(1)) log.u(r)} <a(v(r)) + log log r :~(X) I '
og X x=x'(r)

where v(r) < x*(r) < v(r) log r. This gives 82 ~ 1 + ({J2' since a(x) E n.
Since [12, pp. 28-32] log .u(r2

) > v(r) log r, proceeding as above, we get

82 ~ 1 + ({J2' and so 82= 1 + ({J2'

(vi) Proof of 81 = 1 + ({JI when a(x) E n is similar to part (v) above.

Theorem follows from parts (i) to (vi) above.

THEOREM 4. Let f(z), defined by (1.5), be an entire function having
generalised order p(a, a,f) == p(l ~ p ~ 00). Then

(A) (i) We have

p(a, a,j) = P(L),

where

- . a(An )

L = 11l~~~up a{ (l/An) log janl- I } •

(ii) p(a, a,j) ~ P(£*)

if £* is well defined by

- . a(An )
L * = lIm sup ---,--;--:-:-:------:-:..,.=:---,----.,--,.,­

n~oo a{ (l/(A n - An-I)) log Ian_l/anI}

(3.7)
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(B) If, further, 'If(n) is ultimately a nondecreasing function then

p(a, a,f) = P(L) = P(L*).
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Proof (A)(i) Abbreviate p(a, a,j) as p. If a(x) En, it follows from
Theorem 1 of [9] that p ~ P(L).

Next, let a(x) E ii and p < 00. Then, by (1.6), given e >0 there exists
ro= ro(e) such that

log M(r) < G[log r; p] (3.8)

for r > r0' p = p + e. Choose r = r(n) to be the unique root of the equation

An = -1P G[log r; pl.
ogr

Using Cauchy's inequality, (3.8) and (3.9) we get

where r = r(n) is given by (3.9). Since a(x) E ii, as n -t 00, we have

(3.9)

(3.10)

(3.11 )
1

a(log r) '" ---1 a(An)
p-

for r = r(n) satisfying (3.9). Thus (3.10) and (3.11) give p ~ 1 + L.
We proved above p ~ P(L). To prove p ~ P(L) assume that L < 00. Then

by (3.7), given e > 0, there exists n~ = n~(e) such that

for n > n~, where r = L + e. Now,

00

M(r) ~ L lanl,.An
n=O

n~ s 00

= L lanl,.An + L la,l,.An + L lanl,.An,
n=O n=n~+ 1 n=s+1

where s is chosen such that

As ~ G[log 2r; L] < As+ 1

640/32/1-6
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and so
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M(r) ~A(n~) +exp{G[log 2r; L] log r}

X n~o exp I-AnG [An; ~] ( + n~o 2-
n
,

where A (n~) is a polynomial of degree at most An" Since both the series in
• 0

the above expressIOn are convergent, we have, for large values of r,

(I +0(1))logM(r)~G[iog2r;L] ·Iogr. (3.12)

Using (3.12) we get p ~P(L) and so p =P(L).
This proves part (A)(i) of the theorem.
Parts (A)(ii) and (B) of the theorem can be proved by suitably modifying

the proof of Theorem 3 of [4].

LEMMA 1. Let (1.5) be an entire function having generalised lower order
A(a, a,f) = A(1 ~ A~ (0). Let {nkl%"=o be an increasing sequence ofpositive
integers. Then

(i)

where

and

A(a, a,f) ~ Pii), (3.13 )

(3.14)

(ii) Further, if we take a(x)=a(a) on (-00, a), then

A(a, a,1) ~ p,cf*),

where X is as in (3.14) and

(3.16)

Proof Abbreviate A.(a, a,1) as A.. If a(x) E n, it follows from part (iii) of
the proof of Theorem 4 of Shah [10] that A~ P(i).

Next, let a(x) E Ii and r< 00. Then, for k> ko(e), e >0, we have

(3.18 )
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Set rk = exp{2G[An ; liT]}. Then, for rk ~ r ~;;;Jk+ l' we have, by Caychy'sk-l
inequality and (3.18), that

Using (3.19), we get

log M(r) ~ An G[An ; liT].
k k-l

(3.19)

(3.20)
a(1og M(r)) a(A nk G[AnH; liT])
--'-,-::----:'.,..:-:-~ .

a(log r12) a(log rk+ 1/2)

Equation (3.13) now follows from (3.20) for r< 00. For r= 00 we get
A= 00.

This proves part (i) of the lemma.

(ii) One can verify that

(3.21 )

for. any increasing sequences {nk } of positive integers, if we take a(x) = a(a)
on (-00, a). Part (ii) of the lemma now follows from (3.13) and (3.21).

This proves the lemma.

LEMMA 2. Let (1.5) be an entire function with l{I(n) ultimately a
nondecreasing function of n. Then

(3.22)

also

1* - lim inf a(An_ l ) ~ ({J (3 23)
0- n-<oo a{(I/(An-An_l))loglan_llanl}"" 2' •

where ({J2,for a(x) E A, is defined by (3.3).

Proof of the lemma can be constructed, with suitable changes, along the
lines of proofs of Lemma 4 of [4] and Theorem 2(ii) of [10].

In view of Theorem 3, Lemma 1 and Lemma 2, we have

THEOREM 5. Let (1.5) be an entire function with generalised lower order
-lea, a, -l) == -l(1 ~ -l ~ (0), and l{I(n) be ultimately a nondecreasing function
ofn. Then,

(i) If a(x) E n, we have

(3.24)

where 10 and It are defined by (3.22) and (3.23), respectively.
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(ii) If a(x) E ti, then (3.24) holds under the additional condition that
a(An) ~ a(An+ 1) as n --> 00.

We now prove

THEOREM 6. Let (1.5) be an entire function with generalised lower order
A(a, a,l)::= A(l ~ A~ (0). Then

(i) If a(x) E il, we have

and,further, if we take a(x)=a(a) on (-oo,a), then

A(a, a,1) = max [P,(f'lc)],
Inkl

(3.25)

(3.26)

where X, rand f'lc are as defined in (3.14), (3.15) and (3.17), respectively, and
maximum is taken over all increasing sequences {nd ofpositive integers.

(ii) Further, if {An} is the sequence of the principal indices of f(z)
such that a(An ) '" a(An m ) as m --> 00, then (3.25) and (3.26) hold for

_ m m+l

a(x) E il also (here again, in (3.26) we take a(x) = a(a) on (-00, a».

Proof Consider the function g(z) = L~=o anmzAnm, where {AnJ is the
sequence of the principal indices of f(z). Then g(z) is also an entire function.
Further, f(z) and g(z) have the same maximum term for any z, and so by
Theorem 3 the generalised lower order of g(z) is also A(a, a,f). Also, g(z)
satisfies the hypothesis of Theorem 5. Now, applying Theorem 5 to g(z) and
Lemma 1 tof(z), we get (3.25) and (3.26). This proves the theorem.

Remark. With a(x) = lpx, p ~ 1, we get many results of [4, 11], from the
results of this section. Here ljx denotes the jth iterate of log x.

4. PROOFS OF THEOREMS 1 AND 2

We first have the following connecting lemma:

LEMMA 3. Let f(x) E C[-1, 1] and En(f) satisfy (1.2). Then (A) of
Theorem 1 holds. Further g(z) = L':'=o En(f) zn is an entire transcendenJal
function and

p(a, a,f) = p(a, a, g)
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A(a, a,f) = A(a, a, g).
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The lemma follows from well known inequalities [5, pp. 76-78] and we
omit the proof.

Proofs of Theorems 1 and 2. Theorems 1 and 2 now follow easily from
the Theorems 4-6 and Lemmas 1-3.
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